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ABSTRACT. These two papers continue the investigation of the Stieltjes

summability method, its generalizations and their application to summing sin-

gular Sturm-oille (S-L) eigenfunctions. : -

Paper 1: Given a general singular S-L system on a semi-infinite domain

possessing a discrete negative and continuous positive spectrum, the problem

of inverting the generalized Fourier transform of LP0, Z) (1 ! p < -') func-

tions is considered. The generalized S-L eigenfunction expansions of LP(0, =)

( (5 p < -) functions f are shown to be Stieltjes summable to f with respect

to the LP(O, -) norm for 1 p < - and pointwise on the Lebesgue set of f. As

an immediate application we see that the Stieltjes summability means of eigen-

function expansions with perturbed coefficients converge pointwise to the

koriginal function.

Paper 2: (Joint with Professor Mark Kon of Boston University)

his paper unifies and generalizes a number of results in classical summability

theory for regular and singular S-L expansions. As this generalized summability

method is pointwise stable, it has practical application to the area of ill-

posed problems. Namely, it sums S-Leigenfunction expansions with perturbed co-

efficients to the original function.
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1. Introduction: The general nature of this AFOSR mini-grant was to

further the investigation of the Stieltjes summability method for divergent

integrals and its application to the summation of singular Sturm-Liouville

eigenfunction expansions with a continuous spectral component. This work

is a continuation of research done under Dr. Paul Nikolai at the Flight

Dynamics Laboratory, Wright Patterson Air Force Base during the summer of 1980.

Much of the new research results were obtained during the summer of 1981 when

the investigator visited the Massachusetts Institute of Technology and worked

jointly with Professor Mark Kon of Boston University. The completion of the

research and the writing of the two papers was done under an Army Research

Office grant DAA-G29-81-G-0Oll.

Three major goals of the research has been to study

(1) the properties of Stieltjes kernel associated with the Stieltjes summa-

bility method;

(2) the summing of eigenfunction expansions

(a) pointwise and with respect to the LP(O, -) (I s p < -) norm, and

(b) by developing summation methods stable under perturbation of the

expansion coefficients; and

(3) generalization of classical summability results for regular and singular

S-L eigenfunction expansions.

These results were presented, upon invitation, at the special session

Summability Theory of the annual American Mathematical Society meeting in

Cincinnati in January 1982.

.
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2. Review of Previous Related Research. A summative technical descrip-

tion of the previous research work now follows.

a) Stieltjes summability:

The Stieltjes summability method for divergent integrals and some of its

properties were developed by Raphael during the period 1977-78 [1]. The di-

vergent integral fof(x)dx is said to be Stieltjes summable order w with respect

to~~ ~ ~~ gxiflmI fx)dx
to g(x) if +n g(x) w exists. The function g(x) is assumed monotone

cr-oo 0 [1 + cag(x)J
increasing to infinity. Stieltjes summability was compared with Cesaro and

Abelian summability, expanding on some previous work of Bromwich [2] and Moore

[3) who treated some of the comparison questions under a different formulation.

Stieltjes summability has been applied to discrete series by Hille [4] under

the name resolvent summability, and recently by Judak [5] under the name T-

summation.

In lIj the Stieltjes summability method with g(x) = x and w - I was ap-

plied to the stable pointwise summation of expansions in eigenfunctions of a

singular Sturm-Liouville system on the half-line: u" - q(x)u = - )u; u(O) - 0,

u(-) < -where q(x) is continuous, bounded and in L1 LO , -). This system has

a continuous spectral component of {X > 01 and a bounded, discrete non-posi-

tive spectral component. The generalized Fourier transform and inverse trans-

form are written in the form:

F(X) ~ f(x)u(x, X)dx, f(x) ~ F(X)u(x, X)dp(X)
0kb

where f(x) c L2[0, ), F(X) is the generalized Fourier transform of f, p(X)

is the spectral function, -b = inf(X), and the convergence, denoted by is

I
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in the L2 nerm. (The latter integral is what is meant by "the eigenfunction

expansion of f".)

The Stieltjes means of the inverse transform are given by

S (F x) goF(X)u(x, X) pX
SQ(F x) b + ax~

The following theorem, proved in [1), provides a stable summation method for

the inverse transform based on the Stieltjes means:

Theorem A: Let {FY (X) denote a net of approximations of F(X) such that

IFY - F12,0 : y. If the summation parameter a is scaled with y so that

a ky2 for some k > 0, then S a(F y; x) -, f(x) as y -. 0 if x is a continuity

point of f.

An immediate corollary is that the inverse transform is Stieltjes summable

to f at continuity points. (Take F Y F.) Theorem A was proved by applyingY

the regularization method of Tikhonov, who used it in [6] to prove an analogous

result for regular Sturm-Liouville expansions.

In [7] Diamond, Kon and Raphael generalized Theorem A to Lebesgue points

with a sharper scaling.

b) A general class of stable summation methods for singular Sturm-

Liouville expansions on the half-line (see [8)):

The Sturm-Liouville system considered in [8] is slightly more general than

in [1): u - q(x)u * - Xu, u(O)cos 8 + u'(O)sin s = 0, u(-) < - , where q(x)

is continuous and in L [O , -). General summation methods of the form

S (F; x) - F'() ( )u(x. ,)dp(X)f b
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are studied, where the summator function * satisfies o(O) = 1 and is bounded.

In particular, stable summation methods based on the summability means S are

developed.

The main results are as follows:

Theorem B: Suppose the following two conditions hold:

a) S (F; x) - f(x) as a - 0 (i.e. the inverse transform is 4-sumable

to f at x)

b) ~4 dt <*

1/44

If a is scaled with y so that y/ 14 0 and a 0 as y 0 , then S (Fy; x)

f(x) as y 0 (i.e., S ais a stable summation method). On the other hand,

if y/a 1/4 -x 0 as y - 0 then there exist {F y} such that S (F y; x) x>

f(x) as y 0 (i.e., S is not a stable summation method).

The proof of Theorem B relies on results from the spectral theory of

singular Sturm-Liouville systems as developed in [93 and [10]. Theorem B was

motivated by a paper of Krukovski, [11], who developed the analogous class

of stable summation methods and sharp scaling requirements for (discrete) ex-

pansions in eigenfunctions of the N-dimensional Laplacian.

Theorem B is applied in [8) to the Stieltjes and Riesz summability

methods, for which a priori summahility of the inverse transform is known.

The Stieltjes summability result of [1) is extended to include the case of

Lebesgue points.

c) Absolute summability methods for divergent integrals. While working

at the Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Raphael

considered applying Stieltjes summability methods to divergent integrals on

[0, co), whose summability means are of bounded variation. With Diamond, she
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proved in [12] inclusion theorems relating the absolute summability of divergent

integrals for two Abelian summability and the Stieltjes summability methods.

These results were presented at the annual meeting of the American Mathematical

Society in San Francisco in January 1981. The preprint based on this work has

been submitted for publication to the Canadian Bulletin of Mathematics.

S .-
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New Multiplier Methods for Summing Classical Eigenfunction Expansions

§1. Introduction

The purpose of this paper is to unify and generalize a number of results in classical

summability theory for Sturm-Liouvile eigenfunction expansions (see, e.g., [71,[81), and

in summability for singular Sturm-Liouville expansions. We will show that summability

of such expansions with analytic summator functions, which has been proved in a

number of individual cases, is actually a consequence of so-called resolvent summability

and a "superposition principle" for summator functions.

Classically, summability theory of eigenfunction expansions has dealt with the

application of various summability methods (e.g. Abel, Riesz) to expansions in eigen-

functions {u,(z)} of a self-adjoint boundary value (typically Sturm-Liouville) problem.

A summability method in its more modern sense is a net of linear operators {O-}IEscc

1W which forms an approximate identity in an appropriate function space. In the classical

cm, we make the restriction 0. = O(eA), where A is a self-adjoint differential operator,

0 is a function on R, and O(eA) is defined by operator calculus. Then if f(z) E D(A)

and

f (x) - > au (x)

is an expansion (continuous or discrete) in eigenfunctions of A, then

O(cA)f (x) a. 0 ~(-En)un(z).

The function f is O-summable in a given topology if (FA)f -- f; the topology may be

one of convergence pointwise or in some function space, generally LP. In this role 0 is

a summator function.

1
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Throughout this paper A -- - + + q will be a Sturm-Liouville operator. The

success of the approach used here is based on superposition principle: if a function

f is 01-and 42-summable, then it is al + a 202-summable, for al, a 2 E C. If

one can obtain a sum or integral representation of a summator function in terms of

functions with respect to which f is summable, then certain regularity properties of

the representation will suffice to prove summability for this function. Correspondingly,

since the integral kernel of a summpbility method depends linearly on the summator

function, this principle holds for the kernels of summability methods, which is the

central fact used in this paper.

Our procedure begins with a proof that when O(eX) = (1 + cX) - 1 for e in a complex

domain, then L2 functions are 0-summable in LP and pointwise in fairly general one

dimensional situations. In this case 0-summability is known as resolvent summability.

The proof is accomplished by estimation of the integral kernel of O(eA), which is the

Green function of A-+ . This generalizes known results on resolvent summability [6,2].

From this, expressions for kernels for more general summability methods are obtained

through contour integration of the resolvent kernel. It is then proved that summability

holds if 0 is an analytic function satisfying certain minimal constraints. This extends

a body of results (see [6], [7], [8]) which deal with specific summability methods.

The proofs here will be carried out for the class of singular continuous spectrum

Sturm-Liouville expansions treated in [1,2]. They carry over (in some cases more

simply) to regular expansions on finite intervals.

We now present the problem to be considered in more detail. Let S-L denote the

? singular Sturm-Liouville system

2



Au(z, X) -L + q(z))u(zX)- Xu(,X);

u(O, X) cos 0 + u'(O, X) sin 0; U(0, X) < o, (1)

with q(z) E Ll [0, oo) real valued, continuous, and bounded, and P E [0, 27r). Let u(z, X)

be normalized by

u(O, X) = sin3, u'(0, X) -cos (2)

The spectrum of S-L is bounded from below (say by -b), discrete for X < 0, and

continuous for X > 0 (see [4], Chap. 3). If f E L2 [0 , oo), the S-L expansion of f is

given by

f fb F(X)u(z, X)dp(X), (3)

where

F(X) -~ fo f(z)u(z, X)dz.

Above, p is the spectral function associated with the system, and F, the generalized

Fourier transform of f, is in L 2 ", i.e.,

f F 2(X)dp(X) < 00.

Throughout this paper, - denotes convergence in L 2 as the upper limit of integration

becomes in5nite.

We remark thet the restriction on the potential q in the S-L operator and on the

function f are made in order that the spectral representations given here make sense.

3



If one takes the summation method to be defined by the integral operator coresponding

to O(cA), then the main results of this paper hold for f E LP and a much less restricted

q.

The pointwise convergence of the integral in (3) is well known to be a delicate

question. We define the summabiity means

O(cA) f 0,(X)F(X)u(, X)dp(X), (4)

where 0: C t-+ C is a summator function, with the property 0(O) - 1.

In [21, the expansion (3) is proved to be 4-summable at z when 0(eX) - (1 + eX) - ' (e>

0) and z is a Lebesgue point of f, i.e.,

lim f]__ f( + i7)dn = f(z). (5)

We next prove this for c complex.

We now mention some conventions. Unless otherwise specified, functions will be

defined on [0, co). By contour we mean a rectifiable curve. If C C C, then eC {ec:

c E C). (A) and D(A) denote the spectrum and the domain of the operator A.

§2. Resolvent Summability in the Complex Plane.

Our starting point is a straightforward calculation of the Green function G.* of the

modified operator -d +-i , Rea E R-, with boundary conditions (2):

G*(xx) = (sin 1-coo ) cosfsinh .sinjcoshLS}, (6)

where z> = max {z, x} and z< = min {z,z'} and we assume sin 16 cos P; one

checks easily that the boundary conditions at 0 and co are satisfied.

4



Let G. be the Green function for A = -= + q(z) + , with q(z) as in S-L,

and a sufficiently small that A is positive. The distributional equations

+ !). (,'= 6()

( 2 + q(z) + 1)G.(xx') ( (=) (7)

yield (after subtraction)

G. (x, x') - G*.(x, x') =. -/ G(z, x")q(x")G. (z" , z')dx" (8)

The integral on the right is easily shown to converge absolutely via the boundary

conditions (1) on G0 .

It will later be shown that 0(aA) as an operator on L 2(0 , oo) has kernel Ga(Z, zx'),

if 0(aX) = (1 + )- 1 . With this motivation we now prove

THEOREM 1: Let f E LP[O, oo) (1 < p :_ oo). Then for any -y > 0 and a in the sector

{a arg- l :5-7}r

C a-.Oa JgG..(2z,.')f(z')dx',- f~z

in LP (for 1 < p < oo), and pointwise on in the Lebesgue set of f.

The proof proceeds by estimates on Ga and the use of a theorem from harmonic

analysis on R". We define D, = {a E C : lal _5 r).

LEMMA 1.1: The L 1 -norm I1Ga.(x,x')111,= (respectively, lIC.(x, x')Il1,=') is uniformly

bounded in z (x) and a E fn. ,l D, for r sufficiently small. Furthermore,

-IIG.*(xo) - G,(x, z')1J1,. =(lIa)

5



uniformly in x' (x) as a 0 in f.

Proof: The first statement can be checked explicitly for G*,(x, x'). By (8) and the

Minkowski inequality for integrals

< Cjjqllj f IG.(z", x')f dx"

= jjjjG, z')jj1,,

where C is such that 11 CG.,(z, x')Il. :5 C (or E flt,). Hence

11 !G,(x, z')III,, - C < C~jqjoojG.(x, x')Ili,,

and

II'Ga(x,')jjie: 51 (10)

Similarly, since

we have

a 1-ckC'jjqII.0 '

where C' satisfies IJI..(z, z')IIzIgi : C', a E Mt7 .

By (9) and (10)

;IG,(x, x') - G,(x, z')IIl,, 0(a),

6



the proof being the same when z -+ z1.1

LEMMA 1.2: As a --1 0 in f/1,

IIIG,(x, x') - !G.(, z')I,)I1 -0(V )

uniformly in arg a.

Proof: By (6), I1G(z, x')Ill <_ 2j-oo. Hence by (8) and (10)

IG.*(, x') - G.(z, z')I 5 !IIo;*(x, x)jjqjjG ,z)1,

211qllj _ __(

(sin,- - cos) "1- aCllqll.

Proof of Theorem 1: We first prove the Theorem for G*0. By (6),

-G, (x, -T') -1G~l)(x, x') - !G (2)(X, X'), (12)

where

2 - 2(sinI3 -cos_

Note that both G )(x, x') and IG()(-x, z') are nets of L1 -dilations of radially

decreasing convolution kernels on R. If we extend f(x) to be 0 for x < 0, the conclusion

of the Theorem for GO) is then the statement of a well-known result of harmonic

analysis (see [5], Ch. 1). It thus remains to prove that

f 2G z')f(z')dz' -- 0 (13)

in-LP (I < p < oo), and on the Lebesgue set of f. But this is clear in view of the
&above-stated result and the fact that the replacement x -+ -z changes G()(Z, XI) into

a convolution kernel, and f(z) into a function which is 0 on R + .To complete the

7
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proof, we define the mixed p, q norm by

IIF(z, z')Ip,, = IFx, 1) J d z d' (14)

By Lemmas 1.1 and 1.2 and standard LP interpolation theory, lljG0(C, x')iJi,.' and

II~G-(",x')ll,, are uniformly bounded in a E [1, for a small. Hence by (8) and the

Minkowski inequality,

JIG.*.(x. x,) - G ).(x, x,),,, o 1JIG.*(x,x,),.iipziq,) J, Z (x", ),,dx"
So a

< sup IGx,")IiG(" -0,

(15)

for a E fty.

Letf ELP (1 <p! oo), and + v=1. Then

,(G(-z, z')- Ga.(Z, z'))f(z')dx' < ll(z, z') - G.(z, ')Ill,,,.Ilfll .-. 0IfL a I a
as a --. 0 in Ry, by Lemmas 1.1 and 1.2.

In addition, if 1 < p < oo,

cc1 (G z, x') - G.(x, x'))f(x')dx'll, -IIG(x, z') - G.(x, x')Ilp,.llflp -+ 0,aa

by Hblder's inequality. This finishes the proof.U

J3. Summability for Analytic Multipliers

In this section we develop a representation of the kernel of a summability.method

if,(cA) for 0 analytic, via contour integration of the Green function G. We continue

with the definitions and assumptions in 1.

8



We require the following bounds on the eigenfunctions u(z, X) and spectral function

p of S-L. These olow immediately from well known estimates ([4], Ch. 3).

PROPOSITION 2: As X -- oo, u(z, X) and p(X) satisfy (a)

Cos2 01
u(X,)- sin %f-z + ( (16)

if sin#'- 0, and (b)

u(x, X) -sin cos vrX + 0(

7r \/X-sin2  G

if sin 34, 0.

Let {e}, 0 , S C C be a net of numbers converging to 0. Let O(z) be an analytic

function in a simply connected open domain D, such that ID D a(A) for c sufficiently

small. Let C be a positively oriented simple closed contour through oo such that for C

sufficiently small:

(i) a(A) C CC B, - {z : jarg zj _5 -1} for some I > 0

(ii) D D cC
, (ii)fc ' "") dz < o

(iv) For w in C, O(ew)= fc &S dz

These four conditions will be denoted by [C].

The following lemma follows directly from the theory of operator calculi in Hilbert

space. We include an explicit proof for completeness.

9



LEMMA 3.1: Let f E L2[0,co). Then

O(cA)f F(X)u(z, X)1(A)dp,) = -L - ' f(z)dz (17)

where both sides are considered as integrals of L2-valued functions.

Proof: By (iii) and (iv) 4(cz) is bounded on R+; hence 4(eA) is a bounded operator on

L2 [0, oo). On the other hand, (1 - IA)- 1 has kernel -zG.x (z, z'); by Theorem 1,

(1 - 1A) - 1 is uniformly bounded from L 2 to L2 for z E C. Hence by (iii), the right

side of (17) is bounded as an operator onf.

It thus suffices to show that the left and right sides of (17) agree on a dense subset

of L2 [0, oo). To this end, let f E L2 [0,o), and F(,) E L1'". Then

(A) _T F(X)u(x, X)0(*)dp(X)

the bodeds or xi F(X)u(x, X)dzdp(X)

00

if J (1 - 1 F(X)u(iX)dp(X)dz

= 1 f 0(z) (1f(dz
27ri Jo z. zi

The interchange of integration is justified by

the ~ (X~q~,EC i1~~ 1) IF( Ilu(x)I dpxJoldz I

teboundedness of u(z, X) in X follows from continuity in X and Proposition 2.1

& LEMMA 3.2: If f E L2(O, oo1 and

T cc 2(CX) dX <(19)
J-b

10



then O(eA)f(z) is continuous.

Proof: By the continuity of u(z, X), it suffices to show

JF(X)u(x, X)0(eX)dp(X) 0 (20)

uniformly on compact z-sets. (20) is bounded by

IIFIIzp fM 2(z, X)02(C>)dp(X) M-40,

the convergence being uniform on bounded z-intervals, by Proposition 2. I

LEMMA 3.3: f

JCjIOe)I, <oo, (21)

then f0 ±ez(1 - )-If(z)dz is continuous in z if f E L2 .

Proof: We have

4O(ez) (1 A)- f xd 0 z - - Z
1-- -f()dz - z '))f(x)dx'dz; (22)

G-..(z, z') is continuous in z, and the right side of (22) converges absolutely:

Lo(z)l zG±( ,zi, Z),lf(')Id 'ldzI , < f., jzG.(,x, - ')j12., / 0 1z) I,d,
(23)

which is uniformly bounded for bounded z. i

From Lemmas 3.1-3.3, we conclude:

PROPOSITION 3: If (19) and (21) hold, then for f E L2 , then O(A)f(z) is continuous,

and for all z,

I1 0(Cz) ( 1 _A fzd
(-A)f = (x) f- ()dz. (24)

11



We will now obtain a representation of the kernel for 4,(eA), from which sum-

mability properties are deducible.

THEOREM 4: IfA is the S-L operator of §1, and 4 is as above, then the summability

method 4(cA) has kernel

K,(, x') = - f (cz)G-(,') dz (25)

for e sufSciently small where C is any contour satisfying (C].

Proof: If f E L2 we have by (23),

-Lf O(ez)(z - A)- If z)dz

- 1 f o'(ez) / G_..(z, z')f z')dxrdz (26)

- f K,(z, z')f(x')dx'.i

Note that K,4(x, z') is finite when z 3 z' for all c such that (iii) holds, by (6) and

Lemma 1.2.

We now establish properties of K, which suffice to prove 0-summability for S-L

eigenfunction expansions. In allowing e - 0 in C, we assume certain constraints which

are required in order that K. remain well defined. We continue with the assumptions

and notation of the previous sections.

THEOREM 5: Let {c},Es be a net of complex numbers, and 4 be analytic in a simply

connected domain D such that there exists a C satisfying [C]. Let f E L2(R+). Then

f is 4-summable as c - 0 on its Lebesgue set and in LP for all p such that f E LP.

;Proof: We have

=()f J K,(x, z')f(z')d'. (27)

12



We may assume without loss of generality that [C] and (25) hold for c - 1; when

f is sufficiently small, we may substitute C -- *C without changing the value of the

integral, since since K, does not depend on the particular contour satisfying [C]. Hence,

K., -1 - (z,z) -dz

2-ri - Z C " -

- g( 1)(x - ,) + g 2)(x + z') + &(z, z'),

where (in the notation of (12))

g( P(X, X') = !f t(-z~z (z xz')dz, 29

2ri Jo z C a (9

and R, is the remainder. By (15) and (iii), the mixed p, q norm

IIR,(z, x')I1,, -- 0 (1 < P,q < co). (30)

Hence, if f(z) E LP(R ) (0 < p 5 oo), then for -+r= 1

fo (31)
< IIR,(z. x')11,.p11f11 - 0.

The function gl')(z) is a convolution kernel which is symmetric and monotone decreas

ing in Izl. By the Minkowski inequality and (iii) of [C), 9(g')(x) E L'(R+).

By the arguments in the proof of Theorem 1, this guarantees that for f E LP(R+), g(i) *

f(z) -,. f(z) pointwise for z in the Lebesgue set of f, and in LP (1 < p < oo). It thus

remains to prove that fo g. 2)(z, x')f(z, z')dzx-.....o0 in LP (1 < p coo). This fact

follows and from arguments identical to those proving (13). I

The hypotheses of the Theorem are complicated for the sake of generality. We

now sacrifice generality for more direct applicability:

13



COROLLARY: Let O(z) be analytic in an open domain D containing the closed set

{z: iargzl <_ y) for some > 0, and I0(z)l- O(Izl for some 6 > 0 as z -+ oo

in D. Let e - 0 in the sector larg el _ 1 < J. Then any f E L 2 (R ) is 0-summable

in LP (I < p < oo) and on its Lebesgue set as e -- 0.

The proof of Theorem 5 also carries over (with some simplifications) to the case of

non-singular Sturm-Liouville expansions on a finite interval (a, b]; this situation is the

focus of the classical summability theory for eigenfunction expansions. For brevity we

present this result in a more restricted situation.

THEOREM 6: Let q(z) be a real-valued continuous function on [a, b], and A = -far + q

have spectrum in [-b, ool. If O(z) is analytic in a neighborhood D of B, = {z : jargzj <_ -},

and O(z) =- 0(z-(+6)) in D, then for f E L2 [a,b], the expansion of f in eigenfunctions

of A is 0- summable on the Lebesgue set of A and in all LP[a, b] (p < oo) which contain

f.

Among the classical summability methods encompassed by Theorems 5 and 6 are

the Abel (O(z) = e- c*) and Gauss-Weierstrass (O(z) =e - cz 2) methods.

§ 4. Applications to Stable Summability

Stable summability has been a primary focus in the study of summability of eigen-

function expansions over the last twenty years (see [1,2,3,6]). It has practical applica-

tions in the theory of ill-posed problems in that small perturbations of eigenfunction

expansions arise in practice from limitations on measurement.

If the 0 summability method has summability means 4'(cA)f(z), then the method

is pointivise stable if there exists a non-trivial scaling 7(e) such that for a net {f,} of

14



L 2 functions with the property UfJ f- 112 < f, Y(,A)f.1 (4 )(z)-+f(z) on the Lebesgu.e

set of f.

The following theorem is proved in [1] on the semi-infinite interval, and the proof

extends with little change to Qnite intervals.

THEOREM 7: Suppose that O(X) is a real-valued function and f, f E 2 on R+ or

[a, b] such that the following hold:

(a) 1if- f-112 < y

(c) O(cA)f(x) --. f(x) uniformly on a bounded subset E of R+ or a,b].

(d) a is a function of -y such that as -. 0, a --+ 0, and 0. -0
a4

Then 0(eA)f.(.)(z) -+ f(x) uniformly on E; in particular O(cA) is a stable summation
E40

method.

Hypothesis (c), a priori summability, has been shown to hold for O(X) satisfying the

hypothesis of Theorems 5 and 6; by Theorem 7, these theorems automatically provide

a broad class of methods for which stable summability can be shown to hold. In (61,

Tikhonov proved stable summability for O(X) = (1 + ))- on the set of continuity

points of f E L2 [a, 61, with scaling - 0. This result is improved and generalized in

several ways by Theorems 7 and 6.
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ABSTRACT: Given a general singular Sturm-Liouville (S-L) system on a semi-

infinite domain possessing a discrete negative and continuous positive

spectrum, the problem of inverting the generalized Fourier transform of

LP(O, -) (1 - p < -) functions is considered. We determine conditions under

which the generalized Sturm-Liouville eigenfunction expansions of LP(o, )

(I s p < -) functions f are Stieltjes summable to f with respect to the

LP(O, -) norm for 1 S p < - and pointwise on the Lebesgue set of f. The

Stieltjes kernel, associated with the summability means, is defined to be

a scaled Green's function associated with a perturbation of our S-L system.

As an immediate application we see that the Stieltjes summability means of

eigenfunction expansions with perturbed coefficients converge pointwise to

the original function.
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§1. Introduction: The basic question considered in this paper is given the

generalized Fourier transform F(X) of an LP(O, -) (1 _ p < -) function f, how

do we obtain f back again from F(X)? Difficulties in answering this question

stem from the generalized nature of our eigenfunctions, that F(X) need not be

integrable, and for p > 2, F(X) may not be a function.

The answer to this question for Four.ier and Sturm-Liouville eigenfunction

expansions lies in summability theory. Harmonic analysis has used Cesiro, Abel,

Gauss and in general, summability methods whose associated kernels are L'-

dilations of radially decreasing convolution kernels on the n-dimensional

Euclidean space IRn (n ? 1), IR real ([W), [2], [3), [4]). From the perspec-

tive of self-adjoint differential operators Reisz (equivalent to Cesiro) sum-

mability has been applied to regular and singular Sturm-Liouville eigenfunction

expansions (15, [6), [7]).

Our motivation for considering Stieltjes summability lies in the fact

that this is the method which naturally arises from Tikhonov's regularization

principle for solving a class of ill-posed problem [8]. Stieltjes summabi-

lity was introduced [9) for L2 (0, -) functions in order to recover f(x0 ) from

a singular Sturm-Liouville expansion in which the coefficients are slightly

2
perturbed in the L (0, -) norm. In this paper we consider a singular Sturm-

Liouville (S-L) system defined on the half line with general boundary condi-

tions and which possesses a discrete negative and continuous positive

spectrum.

After providing the mathematical setting of our problem, we identify

the Stieltjes kernel associated with the Stieltjes summability means. This

kernel is a scaled Green's function where the Green's function is associat-

ed with a perturbation of our S-L system. Due to the nature of the problem,
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the eigenfunctions and hence the Stieltjes kernel have general representations.

Thus the kernel does not have the computational character of kernels such as

the Fejer and Poisson (which are the kernels associated with the Cisaro and

Abel summability methods). However we are able to show that our kernel pos-

sesses properties analogous to those of the convolution kernels.

Our principal result for LP(O, -) (1 ;s p < -) functions f is the LP(o, c)

(1 < p < -) and pointwise convergence on the Lebesgue set of f of the Stieltjes

summability means of the S-L expansion to f. We prove these summability results

by using well known results in harmonic analysis for dilations of a convolution

kernel [4]. We also use the fact that for p = 2, pointwise convergence of the

Stieltjes means was proved [9] solely on the assumption that f belongs to

12 (0, -). (We mention that we could give an alternate proof of the convergence

of the Stieltjes means, with respect to the LP-norm and on the set of contin-

uity points of f, by using the properties of the Stieltjes kernel (Theorem 1)

and classical techniques ' la Titchmarsh.)

Finally, as an application we show that if the coefficients in the

expansion of an LP(o, -) (I s p < -) function are perturbed slightly in the

12(0, o) norm, then the Stieltjes summability method is stable. That is,

this method recovers a good approximation to f at points where f is suffi-

ciently regular.

Acknowledgement. It is a pleasure to thank Professor Aileen Bonami of

the University of Paris and Professor Mark Kon of Boston University who

suggested the techniques used.
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S2. The S-L System: A detailed mathematical formulation of our S-L system

is now presented.
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Let S-L denote the singular Sturm-Liouville system

u"(x) - q(x)u(x, A) = - Xu(x, A) (1)

with boundary conditions

u(0, X)cos 8 + u'(0, X)sin 0 0 and u(-,A ) < a, (2)

where q(x) c L'(0, -) n L"(O, -) is continuous and real valued. The function

u(x, X) (for all X in the spectrum) are normalized by the conditions

u(O, A) = sin 0 and u'(O, X) = - cos 8 (3)

The spectrum of S-L is bounded from below, discrete for X -< 0 and con-

tinuous for A > 0 ([7], Theorem 3.1, p. 209 and Theorem 3.2, p. 211). The

non-positive spectrum is denoted by {Xn I and the associated eigenfunctions

by {u(x, n )J. In general u(x, X) denotes the eigenfunction associated with

the spectral element X, where X c {X n  u (0, =).

For f(x) e L2(0, -), the S-L expansion of f is given by
cc Go

f(x) - F( )u(x, Xn )d + JF(A)u(x. X)dp(X) = F(X)u(x, X)dp() (4a)
An 0 -b

where

F() f(x)u(x, )dx (4b)
10

In (3a), -b = inf Xn, p({ ) is the spectral function of the system under

the normalization (3), and dn = p(Xn) - p(Xn). In (4b), F(X) is the general-
2 2 dntstesur

ized Fourier transform of f(x) and F e L (-b, -) where Lp denotes the square
p p

norm with respect to the measure p(). The symbol - denotes convergence in

2Ithe L -_ norm as the upper limit of summation or integration becomes infinite.
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When f c L2(0, ) the expansion in (4a) converges to f in the L2(0, )

norm, "but the convergence need not be pointwise. For f e LP(o, -), p k 1

and p * 2, the question of existence of the generalized integrals in (4a)

*and (4b) must be determined. To illustrate the complexity of this question,

we cite the classical Fourier integral. Every f e LP(- , cc) (1 ; p : -)

has a Fourier transform F(;) (defined as a tempered distribution) that co-

incides with an Lp function if.1 s p s 2. But for p > 2 there exist LP

functions whose Fourier transforms cannot be expressed as a function. So

one of our main objectives is to determine when (4b) and Stieltjes sumabi-

lity means of (4a) exist.

All proofs herein are for the class of singular continuous spectrum

S-L expansions associated with the system (1) thru (3). We remark that

these proofs carry over, more simply, to regular S-L expansions on finite

intervals.

3. The Stieltjes Kernel: The summator or weight function for the Stieltjes

summability method is O(A) = (I + A)- . The Stleltjes summability means,

where they exist, of the S-L expansion (4a) are denoted by
a.

S X) F -X u(x, X)dp(X) 0 < a < (5)
-b

where a is the summation parameter and x is fixed. The S-L expansion (4a)

is called Stieltjes-summable at x0 if lim S (f; x) exists and called

Stieltjes-summable to f at x0 If lim S(f; xO) 0 f(Xo).

Formally S,(f; x) may be rewritten as

S(f x)- f(x) Ko(x, s)ds (6)
000
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where the kernel K (x, s) is formally given byCL

K.(x. s)- u(x, )u(s, X) dp(X).'~ + ax•
0

The immediate objectives are to determine when S (f; x) is defined and to

derive a formula for the kernel K (x, s).

It is a consequence of [9) that for f c L2 (0,)

(f; x) = G(x, s; 1) f(s)ds (7)
a a JO a0
1

where G(x, s; -) is the Green's function of the distributional equationaI

-u"(x, X) + [q(x) + )u(X. X) =- 6s(X) (8)

where u(O) = 0Qand u(-) < , and where 6s is the Dirac distribution cen-

tered at s. From (6) and (7), it is natural to define the Stieltjes kernel

Ka(x, s) for f £ L2(0, -) to be 1 G(x, s; 1) where G(x, s; 1) is as above.

To determine under what conditions (7)would be true for LP(o, =)

functions, (1 r p < -), we must, due to the nature of the eigenfunctions,

consider cases based on whether sin 8 = 0 or not. In general, however, the

1 (1)procedure is as follows: For an L (0, =) function f ,: we let {f nI be a

sequence of functions. which belongs to a dense subset of 1 (0, -), say
1 2 01 l

I n L2 , and which converges to f(l) with respect to the L -norm. We then

prove identity (7) for 1 (0, -) functions by using (7) for L2 (0, -) functions.

An interpolation theorem will prove (7) for LP(o, ) (1< p < 2) functions.

Lastly, for p > 2 we impose restrictions to insure that the improper in-

tegrals exist and thereby proving the identity (7) by standard arguments.

First we need a bound on the Green's function G(x, s; 1). Since we are
a

unable to calculate G(x, s; -) directly, we calculate the Green's function
a

G*(x, s; -) for a > 0 of
a
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-u"(x) + 1 u(x) - - 6 (x) (9)

where

u(O) - sin B and u(-) < .

e ~ Icos B sinh S sin Bcosh-- s <x

1cos B-ssin Q 0n)

cos B- sin B{ s B sinh sin B cosh . s > x

G*(xF C; " e"7(/.os sh sin Ncos . ,s>

We recall that the q(x) in our S-L system is uniformly bounded, say by

M > 0. This was done in order to be able to bound G(x, s; -), The import

of our next lemma is that the Green's function of our S-L system is bounded

between a combination of Green's functions, each of which is bounded by a

bell-shaped convolution kernel which is radially decreasing in the parameter

a on IR.

Lemma 1: (a) G*(x, s; ~. ~~(x. S; .) + G~lX S ; (a

where

(I ) Ix-s I/ (~2)(X,s;)

'_ - sin B. + 'Va cos B -Ix+siV 0 5 X, S, (11b)
2 (sin B- '-cos )

(b) For lq(x)l 5 M, .M +1> 0 and x c (0, )

(2
,11 (1 -1x-1/ 1

G**(x, s; M + G (x, s; M + IG)(x. S; M + G(x1S; )

GO(x s; - M -11 + I 2(,s; M +4 G**(x, s -4 M+~ (
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Proof. Part (a) follows from an easy calculation on (10). Part (b) follows
1 1

by substituting t M + for in (llb) and comparing terms. Part (b) implies

part (c).

The following approximations on the eigenfunctins and spectral function

p for large X follows from [7, Equation 3.5, p. 205) and [7, Theorem 3.2, p.

211 and p. 206] respectively.

Lemma 2: As A - -, u(x, A) and p(A) satisfy

(a) if sin 8 = 0

u(x, X) C c sin -Fx + 0 (1)
- X(14)DO' NrX = T2co + o00),

71T Cos8

and

(b) if sin 8 A 0

u(x, X) - sin 8 cos-x + NIX)

1 01

P'(X) + +(

We remark that u(x, A) is bounded in x for fixed X, and bounded in A

for fixed x, but it is not bounded jointly. Moreover, u(x, X) may get large

as X gets small for x large.

We prove the lemmas in the following order: sin a 0 0 and 1 s p s 2,

sin 8=0 and 1 _< p s 2; and lastly for arbitrary sin 8 and p > 2. We have

noticed that the proofs of. these lemmas go through identically if we re-

place the Stieltjes weight function (1 + X) "I by a summator function *(X)

which is analytic, bounded and such that Ji ) <-. Moreover, If our

1 
-

summator function (1 + X)- were replaced by a function *(X) which is in

L (0, -) and analytic, then the following lemmas can be obtained with less

* '
- z- --- ~ --- --.-. _ ___ ___
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assumptions. (Of course, the Stieltjes weight function satisfies

SO()d < , but is not in L'(O, .)

-b "

In Lemma 3 the following notation is used when {fn):l is a sequence of

L n L2 functions. Let

Fn(n ) J 0fn(x)u(x, ,)dx

and

S (fn; x) a u(x, X)dp(X)

-b

Lemma 3. For sin 8 0, if f £0 (o,m) and {fnlni is a sequence of L1 n L2

functions which converges to f in the L -norm, and if u(x, X) is uniformly bounded

in X for x large, then

(a) Fn (A) - F(A) converges uniformly in X to zero as n * ;

(b) Sa(fn; x) - Sa(f; x) converges pointwise to zero as n -;

(c) S (f; x) is continuous in x and belongs to L1(0, n);( 1 -)
(d) Sf ) = I cG(x, s; -)f(s)ds pointwise and where G(- 1 is Green's(d a(f; x) ; 0

0
function for (8).

Proof: By Lemma 2 part (b), u(x, X) is uniformly bounded in X for bounded x.

The proof of part (a) follows by our assumption on u(x, A) and f n - fi1 l l 0

as n.

To prove part (b), we write

S (fn; x) - S (f; x) - X) - F()) (l X) do(X).

In the case sin B # 0, Lemma 2 gives u(x, X) = O(V A), dp(X) - O( ) and so the

product of the last three terms in the integral is 0(- The proof is com-

pleted by using part (a).
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To prove part (c) one need only observe that F(X) c L(O, =) (as

f c L'(0, -)), u(x, X) is uniformly bounded for bounded x-intervals, and

0(L). Thus the improper integral u(x1 + )dp(X) converges

absolutely and uniformly in x. Hence S O(f; x) is continuous in x and belongs

to L'(0, -),

Finally to prove part (d), we recall (9] that for f n c L2(0, )
CO

S (fn; x) = JG(x, S; )fn(s)ds.

0
pointwise. Next we note that

aO

lJG(x, ; )fn(s)ds converges pointwise to JG(x, s; I)f(s)ds

0 0

as
G(xs; )fn() - f(x)]dsl z IIG(" ; 1)II Ifn - fi1 1 0

0

pointwise as n - =. (For the bound on G(- ; l) see Lemma 1).

So Sa(fn; x) converges pointwise to both S (f; x) (part (b)) and

G1(x, s) f(s)ds and so the proof of part (d) is complete.

Next we use an interpolation theorem to extend the result of part (d)

to LP(o, -) functions for p between 1 and 2.

Lemma 4: For sin B # 0, f c LP(o, I), 1 < p < 2 and under the assumptions

of Lemma 3, then

(a) S (f; x) is continuous in x;

(b) S (f; X) a - IG(x, s; I)f(s)ds pointwise and where G(- ; ;) is the Green's

function for (8);

(c) S (f; x) belongs to LP(o, I), 1 < p < 2.

7-
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Proof: If f c LP(o, c) where 1 < p < 2, then f can be expressed as the

sum of an L (0, -) and L2 (0, c) function, namely

f(x) = f(x)g (x) + f(x)x (x) = f(x) + f2 (x).
If -1 IfIZl

We then write

S (f; x) = S (fl; x) + S(f2; x) 1( u(x, X)dp(X)0

where F(X) is the sum of the L'(O, -) Fourier coefficient FM(X) associated with

f( and the L(, -) Fourier coefficient F(X) associated with f2 "

The continuity of S (f; x) now follows by separate arguments for the con-

tinuity of S,(f,; x) and S(f2; x). The first follows by-Lemma 3 and the second

[9 by Cauchy-Schwarz and [7, Corollary 1, p. 116].

Similarly, the proof of part (b) follows by separate arguments on S a(f l ; x)

and S (f2; x) (Lemma 3 and [9]).

Finally we show that S (f; x) belongs to LP(o, -) by observing that G(x, s; -,)

is bounded by half of a bell-shaped convolution kernel (see Lemma 1). As
L(O, -), G(x, s; 1 and its bound (0,), the convolution is well de-

fined and converges absolutely a.e. in x. So by Young's inequality we have

p al (x, ; f I X-s1/ N-
II (f, s)I = l ; s)f(s)dsII Sgj f(s)dsjIpo o

r Il II l Hfllp, where C- 3.
v/( 2

We will use the following notation in the next two lemmas. Let L (oc(O )

denote the space of functions which are square integrable over every compact sub-

set of (0, -). For f e LP(o, -) we define

fN(x) * (X) u(x, X)dp(X)

ab
and
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where FM~ c L~c[-b, N) for p I1, and F(A) c' L1 2 (0, -) for p > 2.

We continue now with the case sin 8 - 0 and I p 2.

1
Lemma 5! For sin 6 0 and f c L (0, -). if

fN(X) -+ f(X) in L (0, )
and

S (fN; X) -' S(f; x) pointwise as N

then

(a) S (fN x) G(x, s~Ns)ds

(b)~ ~ S f;X G(x, S; -)f(s)ds

(C) S J; X) c L (0, .

Proof. Define

C-b,)]
and

F (X) M 1Fx) x MX
N~c~ + -b,N]

Clearly F N and F N~ablogt L 2 nl Lc This in turn implies that f N and

S a(f N; x) belong to L 2(0, -). And so by [9j
00

S (f ; x) = G(x, s; 1) ~N()ds.

To prove part (b) we observe that 11 IG(x, S; .1)f (s)ds converges to

** OG* x s; )f(s)ds poi ntwi se as fN- ffl., - 0 as N * .By hypotheses,

S a (f ; X) converges pointwise to S a(f; x), and so the equality holds.
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Part (c) follows from (b), a bound on G and f c LI(. Dw).

Again we use an interpolation theorem to extend Lemma 5 part (b) to

LP(o, -) functions, 1 < p < 2, when sin B 0.

Lemma 6: For sin B = 0, f c LP(o, w), 1 < p < 2 and under the assumptions of

Lemma 5, then

(a) S (f; x) - IOG(x, s; '1)f(x)ds

(b) Sa(f; x) c LP(o, 1 < p < 2.

Proof: If f c LP(o, I), 1 < p < 2, then as in the proof of Lemma 4, f can be

expressed as the sum of an L1(0, -) and an L2(0, -) function, fl, f2 respectively.

Thus the generalized Fourier coefficient of f belongs to L((O, -) + L 2(0, ).

Clearly
.N

Sa(fN; x) = F() is (x, X)dp(X)
Jb

exists for finite N. Letting Sa(f; x) = Sa(f,; x) + S( f2 ; x) and applying

Lemma 5 to Sa (f; x) and (7) to S,(f2; x) we see part (a is proved.

The proof of part (b) is similar to that of Lemma 4 part (c).

Lastly we consider the case of LP(o, -) functions for p > 2 and sin B

arbitrary. The assumptions of the following lemma are motivated by the fact

that for p > 2, F(X) may not be a function.

Lemma 7: For f E LP(o, -), p > 2, if
N

(1) fN(x) = f F(X)u(x, X)di{X) exists, converges pointwise for each N and for

each fixed x where FX) c L 2o(0
Lloc(O

(2) fN(x) -- f(x) in LP(o, -), p > 2;

(3) Sa(fN; x) exists for each fixed N.and x, and converges pointwise to

S (f; x) for each fixed a, x as N . ,
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then

(a) S (f; X) G(x, s; 1)f(s)ds;

(b) S a(f; x) c LP(O, c), p > 2.

Proof. As F(X) e L 2 (O, ) implies fN c L2 (0, we have

[ -x),F(X) X ( dp(X) G(x, s)fN(s)ds.
-b [-bN1 0 a N

Moreover
Occ

Il JG(x, s; 1 )fN(s)ds - I G(x, s; -)f(s)dsl s Ii-G(• ; )lq IlfN -fl 0
aN a a 1a0qaN p0 0

• 14 +* = 1* Thus 1 (xs 1fNSd

as N * for p > 0, q > 0 and .+ . T G(x, s; 1)f(s)ds converges

r 1U
pointwise to I cJ G(x, s; -)f(s)ds. The proof of part (a) is completed by using

hypothesis (3).

The proof of part (b) follows from Holder's inequality.

The following definition is now motivated by Lemmas 3 through 7.

Definition: The Stieltjes kernel Ka (x, s) for the Stieltjes means (5) of

an LP(o, =), p 5 1, function f, is defined to be G(x, s; 1) where G(x, s; -)

is the Green's function for the perturbed S-L system (8).

Properties of K (x, s), the Stieltjes kernel, analogous to those of the

convolution kernels are now proved.

Theorem I: If K (x, s) is the Stieltjes kernel, then

(a) lim K (x, s)ds = 1;

(b) For each e > 0, lim K K(x, s)ds - 0, 0 x, s < ;, a .-O jx-s ]>C

(c) For each e > 0, lir K s)ds] for q > 1;
ot,. fIx-sl>e
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(d) k (x, s) - 0 uniformly for all x and s as a - 0 for which Ix - sI > £ > 0

and 0 s x < s < .

Proof: By Lemma I it follows that

- 1
G**(x, s; M + )ds s - G(x, s; -)ds s G**(x, s; - M + )ds.a JI a aj a* aI a0 0 0

An easy calculation shows that the upper and lower bounds approach one as a 0.

As K (x, s) = I G (x, s), part (a) is proved.
a a a

To establish part (b) we use Lemma 1 part (c) and evaluate the bounding

function on Ix - s I > c as a - 0.

Proof of part (c) is the same as (b).

Finally to prove part (d) we use Lemma I part (c) and note that the bounding

function approaches zero as a approaches zero independent of x and s provided

Ix - sl E > 0.

§4. Recovering f from F(X): By using two standard theorems of harmonic analysis

[4, Theorem 1.18, p. 10 and Theorem 1.25, p. 13], we now prove the principal re-

sult of this paper.

Theorem 2: Let f c LP(o, -) (1 - p < = ) and K (x, s) be the Stieltjes kernel.

Then

(a) I G(x, s; i-)f(s)ds = (x, s)f(s)ds f(x) as a - 0

0 0

in LP(o, ) (1 ! p < -) and pointwise on the Lebesgue set of f;

(b) Under the hypotheses of Lemmas 3-7, the Stieltjes summability means

--
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S (f; x) 1+ u(x, X)f(s)ds f(x) as a O, 0 0 <

-b

in LP(O, ) (1 s p < -) and pointwise on the Lebesgue set of f.

Proof: Referring to Lemma 1, we write,

1 * (1 1
G(x, s; G) = x, s; M + 1) + [G(x, s; )-G**(x, s; M + )

-5 G**(x, s; M + I) + LG**(x, s; - M + -) - G**(x, s; M +

Similarly,

G**(x, s; - M + + [G**(x, S; M + - G(x, s; - M + -)1 5 G(x, s; -).
a ax ax a

Each of the G** is expressed in terms of G(1) and G(2 ) (see (11 a-b) and (12)

of Lemma 1).

Now extend f(x) to be 0 for x s 0. We interpret the G() to be L1 -dilations

of radially decreasing convolution kernels in IR. So the conclusion of this

theorem holds for all GM by the well-known theorems in harmonic analysis.

That is, aJG(l x s;± M+ 1)f(s)ds -, f(x) as a - 0 in LP(l : p < -) and point-

wise on the Lebesgue set of f.

Considering G"2 ) on IR, replace s by -s. This changes G 2"(x, s; ± M +-)

into a convolution kernel on IR and f(s) into a function which is 0 on IR+. And

so 1 fG(2) (x, s; ± M + 1)f(s)ds -* 0 as a - 0 in LP(-l s p < -) and on the

Lebesgue set of f.

To complete the proof of part (a) we need only observe that

, I cc
SI G**(x, s; ± M + 1 )f(s)ds - f(x) as , -. 0
a0 OL

and

1'[G**(x, s; - M +I) - G**(x, s; M + )]f(s)ds * f(x) - f(x) 0 0

as c-' 0 in LP(l < p <cc) and on the Lebesgue set of f.
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The proof of part (b) is immediate after noting that under the conditions

of Lemmas 3-7, S a(f; x) (x, s)f(s)ds =* a(x, s)f(s)ds.
0 0 .00'

§5. Application to Stable Summability: In experiments which give the coeffi-

cients of eigenfunction expansions [8J, measuring errors cause small perturbations

in the expansion coefficients. Thus stable summability methods which recover

from the perturbed expansions a good approximation to the original function f,

at points where f is sufficiently regular, are of interest.

For the remainder of this paper, we assume that f £ LP(O, -) for 1 : p < -

satisfies the hypotheses of Lemmas 3-7. This insures that the Stieltjes summa-

bility means S a(f; x) exist. As usual, F(X) denotes f's generalized Fourier

transform.- Let {f Y(x))Y be a sequence of Lr(O, -) function 1 < r < - which also

satisfy Lemmas 3-7 and such that the associated generalized Fourier transforms

{F Y(X)} denote a net of approximations to F(X) such that to each value of the

index y, Fy (X) satisfies

11'F - FI,2= {IFY M - F(,)12 dp(M1/2 :Y

-b
We say a sumability method is pointwise stable if there exists a non-

trivial scaling y(c) such that for (F (X)}Y satisfying JIF - F11 2 sy and

S a(f; x) -, f(x) pointwise as a - 0, then S (f y; x) * f(x) pointwise as a - 0.

Our final result says that (under our restrictions) the Stieltjes summabi-

* lity means S(f ; x) furnish a stable summation method, if the summation parameter

a is approximately scaled to go to zero with y. The proof of this theorem is

essentially the same as (10, Theorem 1, p. 282].

Theorem 3: Let f LP(o) (I p < -) and (ff Lr(O,) (I s r <m

satisfy the hypotheses of Lemmas 3-7. Suppose that the following hold
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(1) IF.,- F1 2 SY

(2) S (f; x) -, f(x) as a - 0 uniformly on a bounded subset E of (0, -)

(3) a is a function of y such that both a * 0 and y/a /4 - 0 as y - 0. Then

(a) S.(f; x) -* f(x) as a - 0 uniformly in E, and

(b) S0 is a stable summability method

We observe that this theorem holds for general summability methods where

the summator function ¢ is real valued and (X)dx < C
CO

Finally, we comment that the Stieltjes kernel for S (f ; x) is the same

as the Stieltjes kernel for S (f, x).

Remarks: We close this paper with two remarks. First all proofs herein

were carried out for the class of singular continuous S-L expansions. We em-

phasize that the hypotheses of the results and their proofs are simplified for

regular S-L expansions on finite intervals.

Second, in a joint paper with Professor Mark Kon, the results herein are

extended to proving summability for a class of singular Sturm-Liouville expan-

sions using dilation of analytic multipliers [12J.

IL
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